class TIFAScore
Bases: BaseMetric
Initialize the TIFAScore
evaluator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
openai_key
|
str
|
The user's api key of the LLM models openai provides. |
required |
llm_model
|
str
|
The name of the LLM model used in the TIFAScore evaluator. Defaults to |
'gpt-3.5-turbo'
|
unifiedqa_model_name
|
str
|
The name of the |
'allenai/unifiedqa-v2-t5-large-1363200'
|
vqa_model_name
|
str
|
The name of the |
'mplug-large'
|
Source code in aigve/metrics/text_video_alignment/gpt_based/TIFA/tifa_eval.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
compute_metrics(results)
Compute the metrics from processed results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
list
|
The processed results of each batch. |
required |
Returns:
Type | Description |
---|---|
Dict[str, float]
|
Dict[str, float]: The computed metrics. The keys are the names of |
Dict[str, float]
|
the metrics, and the values are corresponding results. |
Source code in aigve/metrics/text_video_alignment/gpt_based/TIFA/tifa_eval.py
process(data_batch, data_samples)
TIFAScore process
Process one batch of data samples and predictions. The processed
results should be stored in self.results
, which will be used to
compute the metrics when all batches have been processed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_batch
|
Sequence
|
A batch of data from the dataloader. |
required |
data_samples
|
Sequence
|
A batch of data samples that contain annotations and predictions. |
required |