class GSTVQA
Bases: BaseMetric
GstVQA metric modified for the toy dataset. (Supporting 2944-dim features).
Source code in aigve/metrics/video_quality_assessment/nn_based/gstvqa/gstvqa_metric.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
compute_metrics(results)
Compute final GSTVQA-based metrics.
Source code in aigve/metrics/video_quality_assessment/nn_based/gstvqa/gstvqa_metric.py
compute_stat_features(features, num_valid_frames)
Compute statistical features mean_var, std_var, mean_mean, std_mean from extracted deep features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
Tensor
|
Tensor of shape [T, 2944]. |
required |
num_valid_frames
|
int
|
Number of valid frames before padding. |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor]
|
Tuple[torch.Tensor]: (mean_var, std_var, mean_mean, std_mean), each of shape [1472]. |
Source code in aigve/metrics/video_quality_assessment/nn_based/gstvqa/gstvqa_metric.py
process(data_batch, data_samples)
Process a batch of extracted deep features for GSTVQA evaluation and store results in a JSON file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_batch
|
SequencTuplee
|
A batch of data from the dataloader (not used here). |
required |
data_samples
|
List[[Tensor], Tuple[int], Tuple[str]]
|
A list containing three tuples:
- A tuple of |
required |