Skip to content

class DSGScore

Bases: BaseMetric

Initialize the DSGScore evaluator.

Parameters:

Name Type Description Default
vqa_model_name str

The name of the VQA model used in the DSGScore evaluator. Defaults to InstructBLIP, you can also choose the "MPLUG" as the VQA model.

'InstructBLIP'
verbose bool

Whether the intermediate output processes is required. Defaults to False.

False
Source code in aigve/metrics/text_video_alignment/gpt_based/dsg/dsg_eval.py
@METRICS.register_module()
class DSGScore(BaseMetric):
    """ Initialize the ``DSGScore`` evaluator.

    Args:
        vqa_model_name (str): The name of the VQA model used in the DSGScore evaluator. Defaults to ``InstructBLIP``, you can also choose the "MPLUG" as the VQA model.
        verbose (bool): Whether the intermediate output processes is required. Defaults to False.
    """
    def __init__(self, 
                 vqa_model_name: str = "InstructBLIP",
                 verbose: bool = False):
        super().__init__()

        self.submodel_path = 'metrics/text_video_alignment/gpt_based/dsg'
        if not submodule_exists(self.submodel_path):
            add_git_submodule(
                repo_url='https://github.com/j-min/DSG.git', 
                submodule_path=self.submodel_path
            )     
        from .DSG.dsg.vqa_utils import MPLUG, InstructBLIP

        self.vqa_model_name = vqa_model_name
        assert self.vqa_model_name in ["InstructBLIP", "MPLUG"]
        if self.vqa_model_name == 'InstructBLIP':
            self.vqa_model = InstructBLIP()
        else:
            self.vqa_model = MPLUG()

        self.verbose = verbose
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


    def evaluate_image_dsg(self, qid_list, frame_index, frame) -> Dict[str, Union[int, dict, float]]:
        """ Evaluate a generated image with DSG evaluator; this is the intermediate process of the ``process`` function. 

        Args:
            qid_list (List[str]): The list of DSG parse question generation results.
            frame_index (int): The index number of the currently evaluated frame.
            frame (List[List[float]]): The current evaluated frame.

        Returns:
            Dict[str, Union[int, dict, float]]: A dictionary containing evaluation results with the following keys:
                - 'frame_index' (int): The index of the evaluated frame.
                - 'qid2tuple' (dict): Mapping of question IDs to tuples.
                - 'qid2dependency' (dict): Mapping of question IDs to dependencies.
                - 'qid2question' (dict): Mapping of question IDs to actual questions.
                - 'qid2answer' (dict): Mapping of question IDs to predicted answers.
                - 'qid2scores' (dict): Mapping of question IDs to scores before dependency filtering.
                - 'qid2validity' (dict): Mapping of question IDs to boolean validity after dependency filtering.
                - 'average_score_with_dependency' (float): Average score considering dependency filtering.
                - 'average_score_without_dependency' (float): Average score before dependency filtering.
        """
        if self.verbose:
            print("#"*50)
            print("2) Answer questions given the generated image, with VQA")
            print("#"*50)

        # 2) answer questions with the generated image
        qid2answer = {}
        qid2scores = {}

        qid2tuple, qid2dependency, qid2question = qid_list
        for id, question in qid2question.items():
            answer = self.vqa_model.vqa(image=frame, question=question)
            print(answer)
            qid2answer[id] = answer
            qid2scores[id] = float('yes' in answer)

        average_score_without_dep = sum(qid2scores.values()) / len(qid2scores)
        print(average_score_without_dep, qid2answer, qid2scores)

        if self.verbose:
            print("#"*50)
            print("3) Zero-out scores from invalid questions")
            print("#"*50)

        # 3) zero-out scores from invalid questions 
        qid2validity = {}
        qid2scores_after_filtering = deepcopy(qid2scores)

        # print('qid2scores', qid2scores)
        # print('qid2dependency', qid2dependency)
        for id, parent_ids in qid2dependency.items():
            # zero-out scores if parent questions are answered 'no'
            any_parent_answered_no = False
            for parent_id in parent_ids:
                parent_id = list(parent_id)[0]
                if parent_id == 0:
                    continue
                if qid2scores[parent_id] == 0:
                    any_parent_answered_no = True
                    break
            if any_parent_answered_no:
                qid2scores_after_filtering[id] = 0.0
                qid2validity[id] = False
            else:
                qid2validity[id] = True

        if self.verbose:
            print("Per-quesiton eval results (after using dependency)")
            for id in qid2question:
                print("ID", id)
                print("question", qid2question[id])
                print("answer", qid2answer[id])
                print("validity", qid2validity[id])
                print("score (before filtering)", qid2scores[id])
                print("score (after filtering)", qid2scores_after_filtering[id])
                print()

        if self.verbose:
            print("#"*50)
            print("4) Calculate the final score by averaging")
            print("#"*50)

        average_score_with_dep = sum(qid2scores_after_filtering.values()) / len(qid2scores)

        return {
            'frame_index': frame_index,
            'qid2tuple': qid2tuple,
            'qid2dependency': qid2dependency,
            'qid2question': qid2question,
            'qid2answer': qid2answer,
            'qid2scores': qid2scores,
            'qid2validity': qid2validity,
            'average_score_with_dependency': average_score_with_dep,
            'average_score_without_dependency': average_score_without_dep
        }


    def process(self, data_batch: Sequence, data_samples: Sequence) -> None:
        """DSGScore process

        Process one batch of data samples and predictions. The processed
        results should be stored in ``self.results``, which will be used to
        compute the metrics when all batches have been processed.

        Args:
            data_batch (Sequence): A batch of data from the dataloader.
            data_samples (Sequence): A batch of data samples that
                contain annotations and predictions.
        """

        result = dict()

        input_qid_lists, input_videos = data_samples
        bsz = len(input_qid_lists)
        # print('input_qid_lists: ', input_qid_lists)

        # Ensure prompt_input is a tensor
        if isinstance(input_qid_lists, tuple):
            input_qid_lists = list(input_qid_lists)

        if isinstance(input_videos, tuple):
            input_videos = list(input_videos)

        average_dep_score_list, average_wo_dep_score_list = [], []
        for input_qid_list, input_video in zip([input_qid_lists], input_videos):
            evaluate_dict_list = []
            dep_score, wo_dep_score = [], []
            for index, frame in enumerate(input_video):
                # print('input_qid_list: ', input_qid_list)
                evaluate_dict = self.evaluate_image_dsg(qid_list=input_qid_list, 
                                                        frame_index=index, 
                                                        frame=frame)
                evaluate_dict_list.append(evaluate_dict)
                frame_average_score_with_dependency = evaluate_dict['average_score_with_dependency']
                dep_score.append(frame_average_score_with_dependency)
                frame_average_score_without_dependency = evaluate_dict['average_score_without_dependency']
                wo_dep_score.append(frame_average_score_without_dependency)
            avg_dep_score, avg_wo_dep_score = sum(dep_score)/len(dep_score), sum(wo_dep_score)/len(dep_score)
            average_dep_score_list.append(avg_dep_score)
            average_wo_dep_score_list.append(avg_wo_dep_score)


        result['average_dep_dgs_score'] = sum(average_dep_score_list)/len(average_dep_score_list)
        result['average_wo_dep_dgs_score'] = sum(average_wo_dep_score_list)/len(average_wo_dep_score_list)

        self.results.append(result)


    def compute_metrics(self, results: list) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
            results (list): The processed results of each batch.

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()

        dep_dsg_score_np = np.zeros(len(results))
        wo_dep_dsg_score_np = np.zeros(len(results))
        for i, result in enumerate(results):
            dep_dsg_score_np[i] = result['average_dep_dgs_score']
            wo_dep_dsg_score_np[i] = result['average_wo_dep_dgs_score']

        dep_dsg_score_np_mean = np.mean(dep_dsg_score_np) 
        wo_dep_dsg_score_np_mean = np.mean(wo_dep_dsg_score_np)

        print("Test results: dsg score with dependency={:.4f}"
              .format(dep_dsg_score_np_mean))
        print("Test results: dsg score without dependency={:.4f}"
              .format(wo_dep_dsg_score_np_mean))

        return result

compute_metrics(results)

Compute the metrics from processed results.

Parameters:

Name Type Description Default
results list

The processed results of each batch.

required

Returns:

Type Description
Dict[str, float]

Dict[str, float]: The computed metrics. The keys are the names of

Dict[str, float]

the metrics, and the values are corresponding results.

Source code in aigve/metrics/text_video_alignment/gpt_based/dsg/dsg_eval.py
def compute_metrics(self, results: list) -> Dict[str, float]:
    """Compute the metrics from processed results.

    Args:
        results (list): The processed results of each batch.

    Returns:
        Dict[str, float]: The computed metrics. The keys are the names of
        the metrics, and the values are corresponding results.
    """
    logger: MMLogger = MMLogger.get_current_instance()

    dep_dsg_score_np = np.zeros(len(results))
    wo_dep_dsg_score_np = np.zeros(len(results))
    for i, result in enumerate(results):
        dep_dsg_score_np[i] = result['average_dep_dgs_score']
        wo_dep_dsg_score_np[i] = result['average_wo_dep_dgs_score']

    dep_dsg_score_np_mean = np.mean(dep_dsg_score_np) 
    wo_dep_dsg_score_np_mean = np.mean(wo_dep_dsg_score_np)

    print("Test results: dsg score with dependency={:.4f}"
          .format(dep_dsg_score_np_mean))
    print("Test results: dsg score without dependency={:.4f}"
          .format(wo_dep_dsg_score_np_mean))

    return result

evaluate_image_dsg(qid_list, frame_index, frame)

Evaluate a generated image with DSG evaluator; this is the intermediate process of the process function.

Parameters:

Name Type Description Default
qid_list List[str]

The list of DSG parse question generation results.

required
frame_index int

The index number of the currently evaluated frame.

required
frame List[List[float]]

The current evaluated frame.

required

Returns:

Type Description
Dict[str, Union[int, dict, float]]

Dict[str, Union[int, dict, float]]: A dictionary containing evaluation results with the following keys: - 'frame_index' (int): The index of the evaluated frame. - 'qid2tuple' (dict): Mapping of question IDs to tuples. - 'qid2dependency' (dict): Mapping of question IDs to dependencies. - 'qid2question' (dict): Mapping of question IDs to actual questions. - 'qid2answer' (dict): Mapping of question IDs to predicted answers. - 'qid2scores' (dict): Mapping of question IDs to scores before dependency filtering. - 'qid2validity' (dict): Mapping of question IDs to boolean validity after dependency filtering. - 'average_score_with_dependency' (float): Average score considering dependency filtering. - 'average_score_without_dependency' (float): Average score before dependency filtering.

Source code in aigve/metrics/text_video_alignment/gpt_based/dsg/dsg_eval.py
def evaluate_image_dsg(self, qid_list, frame_index, frame) -> Dict[str, Union[int, dict, float]]:
    """ Evaluate a generated image with DSG evaluator; this is the intermediate process of the ``process`` function. 

    Args:
        qid_list (List[str]): The list of DSG parse question generation results.
        frame_index (int): The index number of the currently evaluated frame.
        frame (List[List[float]]): The current evaluated frame.

    Returns:
        Dict[str, Union[int, dict, float]]: A dictionary containing evaluation results with the following keys:
            - 'frame_index' (int): The index of the evaluated frame.
            - 'qid2tuple' (dict): Mapping of question IDs to tuples.
            - 'qid2dependency' (dict): Mapping of question IDs to dependencies.
            - 'qid2question' (dict): Mapping of question IDs to actual questions.
            - 'qid2answer' (dict): Mapping of question IDs to predicted answers.
            - 'qid2scores' (dict): Mapping of question IDs to scores before dependency filtering.
            - 'qid2validity' (dict): Mapping of question IDs to boolean validity after dependency filtering.
            - 'average_score_with_dependency' (float): Average score considering dependency filtering.
            - 'average_score_without_dependency' (float): Average score before dependency filtering.
    """
    if self.verbose:
        print("#"*50)
        print("2) Answer questions given the generated image, with VQA")
        print("#"*50)

    # 2) answer questions with the generated image
    qid2answer = {}
    qid2scores = {}

    qid2tuple, qid2dependency, qid2question = qid_list
    for id, question in qid2question.items():
        answer = self.vqa_model.vqa(image=frame, question=question)
        print(answer)
        qid2answer[id] = answer
        qid2scores[id] = float('yes' in answer)

    average_score_without_dep = sum(qid2scores.values()) / len(qid2scores)
    print(average_score_without_dep, qid2answer, qid2scores)

    if self.verbose:
        print("#"*50)
        print("3) Zero-out scores from invalid questions")
        print("#"*50)

    # 3) zero-out scores from invalid questions 
    qid2validity = {}
    qid2scores_after_filtering = deepcopy(qid2scores)

    # print('qid2scores', qid2scores)
    # print('qid2dependency', qid2dependency)
    for id, parent_ids in qid2dependency.items():
        # zero-out scores if parent questions are answered 'no'
        any_parent_answered_no = False
        for parent_id in parent_ids:
            parent_id = list(parent_id)[0]
            if parent_id == 0:
                continue
            if qid2scores[parent_id] == 0:
                any_parent_answered_no = True
                break
        if any_parent_answered_no:
            qid2scores_after_filtering[id] = 0.0
            qid2validity[id] = False
        else:
            qid2validity[id] = True

    if self.verbose:
        print("Per-quesiton eval results (after using dependency)")
        for id in qid2question:
            print("ID", id)
            print("question", qid2question[id])
            print("answer", qid2answer[id])
            print("validity", qid2validity[id])
            print("score (before filtering)", qid2scores[id])
            print("score (after filtering)", qid2scores_after_filtering[id])
            print()

    if self.verbose:
        print("#"*50)
        print("4) Calculate the final score by averaging")
        print("#"*50)

    average_score_with_dep = sum(qid2scores_after_filtering.values()) / len(qid2scores)

    return {
        'frame_index': frame_index,
        'qid2tuple': qid2tuple,
        'qid2dependency': qid2dependency,
        'qid2question': qid2question,
        'qid2answer': qid2answer,
        'qid2scores': qid2scores,
        'qid2validity': qid2validity,
        'average_score_with_dependency': average_score_with_dep,
        'average_score_without_dependency': average_score_without_dep
    }

process(data_batch, data_samples)

DSGScore process

Process one batch of data samples and predictions. The processed results should be stored in self.results, which will be used to compute the metrics when all batches have been processed.

Parameters:

Name Type Description Default
data_batch Sequence

A batch of data from the dataloader.

required
data_samples Sequence

A batch of data samples that contain annotations and predictions.

required
Source code in aigve/metrics/text_video_alignment/gpt_based/dsg/dsg_eval.py
def process(self, data_batch: Sequence, data_samples: Sequence) -> None:
    """DSGScore process

    Process one batch of data samples and predictions. The processed
    results should be stored in ``self.results``, which will be used to
    compute the metrics when all batches have been processed.

    Args:
        data_batch (Sequence): A batch of data from the dataloader.
        data_samples (Sequence): A batch of data samples that
            contain annotations and predictions.
    """

    result = dict()

    input_qid_lists, input_videos = data_samples
    bsz = len(input_qid_lists)
    # print('input_qid_lists: ', input_qid_lists)

    # Ensure prompt_input is a tensor
    if isinstance(input_qid_lists, tuple):
        input_qid_lists = list(input_qid_lists)

    if isinstance(input_videos, tuple):
        input_videos = list(input_videos)

    average_dep_score_list, average_wo_dep_score_list = [], []
    for input_qid_list, input_video in zip([input_qid_lists], input_videos):
        evaluate_dict_list = []
        dep_score, wo_dep_score = [], []
        for index, frame in enumerate(input_video):
            # print('input_qid_list: ', input_qid_list)
            evaluate_dict = self.evaluate_image_dsg(qid_list=input_qid_list, 
                                                    frame_index=index, 
                                                    frame=frame)
            evaluate_dict_list.append(evaluate_dict)
            frame_average_score_with_dependency = evaluate_dict['average_score_with_dependency']
            dep_score.append(frame_average_score_with_dependency)
            frame_average_score_without_dependency = evaluate_dict['average_score_without_dependency']
            wo_dep_score.append(frame_average_score_without_dependency)
        avg_dep_score, avg_wo_dep_score = sum(dep_score)/len(dep_score), sum(wo_dep_score)/len(dep_score)
        average_dep_score_list.append(avg_dep_score)
        average_wo_dep_score_list.append(avg_wo_dep_score)


    result['average_dep_dgs_score'] = sum(average_dep_score_list)/len(average_dep_score_list)
    result['average_wo_dep_dgs_score'] = sum(average_wo_dep_score_list)/len(average_wo_dep_score_list)

    self.results.append(result)