class DSGScore
Bases: BaseMetric
Initialize the DSGScore
evaluator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vqa_model_name
|
str
|
The name of the VQA model used in the DSGScore evaluator. Defaults to |
'InstructBLIP'
|
verbose
|
bool
|
Whether the intermediate output processes is required. Defaults to False. |
False
|
Source code in aigve/metrics/text_video_alignment/gpt_based/dsg/dsg_eval.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
compute_metrics(results)
Compute the metrics from processed results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
list
|
The processed results of each batch. |
required |
Returns:
Type | Description |
---|---|
Dict[str, float]
|
Dict[str, float]: The computed metrics. The keys are the names of |
Dict[str, float]
|
the metrics, and the values are corresponding results. |
Source code in aigve/metrics/text_video_alignment/gpt_based/dsg/dsg_eval.py
evaluate_image_dsg(qid_list, frame_index, frame)
Evaluate a generated image with DSG evaluator; this is the intermediate process of the process
function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
qid_list
|
List[str]
|
The list of DSG parse question generation results. |
required |
frame_index
|
int
|
The index number of the currently evaluated frame. |
required |
frame
|
List[List[float]]
|
The current evaluated frame. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Union[int, dict, float]]
|
Dict[str, Union[int, dict, float]]: A dictionary containing evaluation results with the following keys: - 'frame_index' (int): The index of the evaluated frame. - 'qid2tuple' (dict): Mapping of question IDs to tuples. - 'qid2dependency' (dict): Mapping of question IDs to dependencies. - 'qid2question' (dict): Mapping of question IDs to actual questions. - 'qid2answer' (dict): Mapping of question IDs to predicted answers. - 'qid2scores' (dict): Mapping of question IDs to scores before dependency filtering. - 'qid2validity' (dict): Mapping of question IDs to boolean validity after dependency filtering. - 'average_score_with_dependency' (float): Average score considering dependency filtering. - 'average_score_without_dependency' (float): Average score before dependency filtering. |
Source code in aigve/metrics/text_video_alignment/gpt_based/dsg/dsg_eval.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
process(data_batch, data_samples)
DSGScore process
Process one batch of data samples and predictions. The processed
results should be stored in self.results
, which will be used to
compute the metrics when all batches have been processed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_batch
|
Sequence
|
A batch of data from the dataloader. |
required |
data_samples
|
Sequence
|
A batch of data samples that contain annotations and predictions. |
required |