class CLIPSimScore
Bases: BaseMetric
Initialize the CLIPSimScore
evaluator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
processor_name
|
str
|
The name of the CLIP processor, which wraps a CLIP feature extractor and a CLIP tokenizer into this single procesor.
Defaults to |
'openai/clip-vit-base-patch32'
|
model_name
|
str
|
The name of the CLIP model. Defaults to |
'openai/clip-vit-base-patch32'
|
logit_scale
|
bool
|
Whether to calcualte the cosine similarity as logits. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
None |
Source code in aigve/metrics/text_video_alignment/similarity_based/clipscore/clipsim.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
compute_metrics(results)
Compute the metrics from processed results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
list
|
The processed results of each batch. |
required |
Returns:
Type | Description |
---|---|
Dict[str, float]
|
Dict[str, float]: The computed metrics. The keys are the names of |
Dict[str, float]
|
the metrics, and the values are corresponding results. |
Source code in aigve/metrics/text_video_alignment/similarity_based/clipscore/clipsim.py
process(data_batch, data_samples)
CLIPSimScore process
Process one batch of data samples and predictions. The processed
results should be stored in self.results
, which will be used to
compute the metrics when all batches have been processed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_batch
|
Sequence
|
A batch of data from the dataloader. |
required |
data_samples
|
Sequence
|
A batch of data samples that contain annotations and predictions. |
required |