Skip to content

aigve.configs

In AIGVE, configuration management is handled using MMEngine's configuration system, which provides a modular, hierarchical, and flexible approach to defining experiment settings. The config system allows users to efficiently configure video evaluation metrics, datasets, dataloaders, etc., making benchmarking and experimentation more streamlined in a structured manner.


Key Features of AIGVE Config System

  • Modular Design: Uses _base_ configurations to reduce redundancy.
  • Customizable Pipelines: Define different evaluation metrics and datasets easily.
  • Flexible Overriding: Modify parameters dynamically via command-line arguments.
  • Scalability: Supports large-scale video evaluation with efficient data loading.

AIGVE Configuration Example

AIGVE uses structured configuration files to define evaluation settings. Below is an example of a CLIPSim metric configuration file:

# Copyright (c) IFM Lab. All rights reserved.
from mmengine.config import read_base
from metrics.text_video_alignment.similarity_based import CLIPSimScore

with read_base():
    from ._base_.datasets.clipsim_dataset import *
    from ._base_.default import *

val_evaluator = dict(
    type=CLIPSimScore,
    model_name='openai/clip-vit-base-patch32',
    logit_scale=False,
)

val_dataloader = dict(
    batch_size=2, 
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type=DefaultSampler, shuffle=False),
    dataset=dict(
        type=CLIPSimDataset,
        processor_name='openai/clip-vit-base-patch32',
        video_dir='/home/exouser/VQA_tool/VQA_Toolkit/data/toy/evaluate/',
        prompt_dir='/home/exouser/VQA_tool/VQA_Toolkit/data/toy/annotations/evaluate.json',
    )
)