aigve.configs
In AIGVE
, configuration management is handled using MMEngine's configuration
system, which provides a modular, hierarchical, and flexible approach to defining
experiment settings. The config system allows users to efficiently configure
video evaluation metrics, datasets, dataloaders, etc., making
benchmarking and experimentation more streamlined in a structured manner.
Key Features of AIGVE Config System
- Modular Design: Uses
_base_
configurations to reduce redundancy. - Customizable Pipelines: Define different evaluation metrics and datasets easily.
- Flexible Overriding: Modify parameters dynamically via command-line arguments.
- Scalability: Supports large-scale video evaluation with efficient data loading.
AIGVE Configuration Example
AIGVE uses structured configuration files to define evaluation settings. Below is an example of a CLIPSim metric configuration file:
# Copyright (c) IFM Lab. All rights reserved.
from mmengine.config import read_base
from metrics.text_video_alignment.similarity_based import CLIPSimScore
with read_base():
from ._base_.datasets.clipsim_dataset import *
from ._base_.default import *
val_evaluator = dict(
type=CLIPSimScore,
model_name='openai/clip-vit-base-patch32',
logit_scale=False,
)
val_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type=DefaultSampler, shuffle=False),
dataset=dict(
type=CLIPSimDataset,
processor_name='openai/clip-vit-base-patch32',
video_dir='/home/exouser/VQA_tool/VQA_Toolkit/data/toy/evaluate/',
prompt_dir='/home/exouser/VQA_tool/VQA_Toolkit/data/toy/annotations/evaluate.json',
)
)